Evaluation of CMUT for passive monitoring of microbubbleassisted ultrasound therapies

A. Dauba¹, J. Goulas¹, L. Colin², L. Jourdain¹, B. Larrat³, J.-L. Gennisson¹, D. Certon², A. Novell¹.

¹BioMaps, Université Paris Saclay, CNRS, Inserm, CEA, Orsay, France, ²GREMAN UMR CNRS 7347, Université François Rabelais, INSA Centre Val de Loire, Tours, France, ³Neurospin, CEA, Université Paris Saclay, France.

BACKGROUND / MOTIVATION

Upon suitable excitation produced by ultrasound (US), **microbubbles (MB)** can permeabilize biological barriers such as the blood-brain barrier (BBB).

 \rightarrow A fine control of US parameters is crucial to avoid vascular damage due to excessive MB activity.

CMUT CHARACTERIZATION

MB nonlinear response, in particular **ultraharmonics (UH)**¹, can be monitor with **passive cavitation detection (PCD)** to prevent brain damages.

Here, we propose to overcome the restricted bandwidth of piezoelectric (PZT) transducers by exploiting the unique properties of a **CMUT**, used in receive mode only, to ensure the safety of the US protocol through **wideband PCD**.

→ In order to avoid the CMUT intrinsic nonlinearity as it could mask MB response all CMUT configurations were used at $V_{dc} = 0.6 V_c$ in order to maximize the sensitivity in receive mode while maintaining a reasonable level of nonlinearity (FHR > 30 dB²).

Bias Voltage (V

METHODS

1) 3 CMUT (square shaped, $8x8 mm^2$, 400 nm gap) single-elements were developed for comparison with a standard PZT (V306-SU Olympus, Tokyo, Japan) centered at 2.25MHz used as gold standard:

 Dimension
 Active surface area

 37×37μm²
 50 %

 32×32μm²
 40 %

 27×27μm²
 35 %

 CMUT characteristics

DETECTION OF CIRCULATING MB SIGNAL

Principle of a CMUT cell (source : philips.com)

CMUT-based PCD (37x37 µm²)

2) CMUT characterization:

- Bandwidth with hydrophone (HGL200, ONDA Corp, Sunnyvale, CA)
 10V_{pp}, pulse width=150ns, pulse repetition frequency=100Hz)
- Collapse voltage (V_c) by varying V_{dc} from 0V to 120V
- Limiting frequency at -20dB (LF-20) determined on bandwidth measurement
- Signal-to-noise ratio (SNR) and fundamental-to-harmonic ratio (FHR) in receive mode as function of the V_{dc} and the acoustic pressure

3) Evaluation of CMUT ability to detect the signal from circulating MB without skull, through rat skull and through macaque skull

Frequency (MHz)

The skull considerably attenuates the high frequency components

Bias Voltage (V)

PCD transducer	AUCR Subharmonic 0.5 f _o (dB)	AUCR Harmonic (3 f ₀ to 6 f ₀) (dB)	AUCR Ultraharmonic (2.5 f_0 to 5.5 f_0) (dB)	AUCR Broadband (dB)
PZT 2.25 MHz	11.3 ± 2.1	18.5 ± 2.2	20.0 ± 2.1	3.4 ± 0.5
CMUT 37×37 µm²	9.7 ± 1.4	24.2 ± 4.5	41.7 ± 5.2	5.2 ± 1.5
CMUT 32×32 µm²	10.3 ± 1.4	18.3 ± 3.3	37.7 ± 3.9	5.1 ± 0.6
CMUT 27×27 µm²	10.3 ± 0.7	23.1 ± 2.0	35.8 ± 0.7	4.4 ± 0.7
	Α	UC ratio through a rat sk	ull n=3	
PCD transducer	AUCR Subharmonic 0.5 f ₀ (dB)	AUCR Harmonic (3 f ₀) (dB)	AUCR Ultraharmonic (2.5 f ₀) (dB)	AUCR Broadband (dB)
PZT 2.25 MHz	16.3 ± 3.4	-0.4 ± 1.0	2.4 ± 1.4	-0.2 ± 0.3

References:

- ¹ A. Novell *et al.* "A new safety index based on intrapulse monitoring of ultra-harmonic cavitation during ultrasound-induced blood-brain barrier opening procedures," Sci. Rep. 2020
- ² A. Novell *et al.* "Exploitation of capacitive micromachined transducers for nonlinear ultrasound imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009
- ³ A. Dauba *et al.* "Evaluation of capacitive micromachined ultrasonic transducers for passive monitoring of microbubble-assisted ultrasound therapies", JASA 2020

Fundings and acknowledgments:

This work was partly funded by the ANR DROPMUT (grant ANR-19-CE19-0011) and France Life Imaging (grant ANR-11-INBS-0006). The authors would like to acknowledge Georges Willoquet, Flavien Barcella and Nicolas Sénégond for their technical assistance.

CMUT 37×37 μm ² 14.4 ± 1.8 -1.8 ± 0.7	CMUT 37×37 µm²	14.4 ± 1.8	-1.8 ± 0.7
--	----------------	------------	------------

7.9 ± 1.2

 2.2 ± 0.5

AUC ratio through a macaque skull n=3

Compared to PZT, the UH signal from MB is increased by 21.7 dB through the rat skull and 5.5 dB for the macaque³.

DISCUSSION & FUTURE WORKS

- While efficient and safe BBB opening can be ensured by intra-pulse monitoring of UH content¹, this study validates CMUT technology for the monitoring of cavitation-based ultrasound therapies such as HIFU, sono-permeabilization or BBB opening.
- ✓ Thicker is the skull bone, more difficult is the detection of high frequency content (as shown in macaque skull data). Usually, lower frequency are used for thick skull such as macaque or human but the detection of high frequency could also be improved by the development of **dedicated amplifiers that can be directly integrated on CMUT PCD**.
- ✓ The results obtained in this study encourage us in **pursuing our investigation** *in vivo* and in developing CMUT-based PCD for large animal validation. Smaller devices (diameter 7 mm) with membrane dimensions of $32 \times 32 \ \mu m^2$ and $37 \times 37 \ \mu m^2$ are currently integrated into the rapeutic transducers and evaluated for animal experiments.