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THEORYINTRODUCTION
→ Expressing the speed of SH (Shear Horizontal) mode elastic shear waves in an uniaxially stressed (along 𝒙𝟏) TI quasi-incompressible solid.
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(with 𝜀 the Green-Lagrange strain tensor, 𝐼2 = Tr 𝜀2, 𝐼3 = Tr 𝜀3)
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Particle motion equation:
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(with 𝑢 = 𝑢𝐷 + 𝑢𝑆)
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Hypotheses for SH mode plane waves (→implying 𝑢𝐷):

• 𝑢𝐷 = 𝑢1
𝐷𝑥1

• 𝑢1
𝐷 = 𝑓 𝑘. Ԧ𝑟 ± 𝑣𝑠𝑡 with 𝑘 =

0
sin 𝜃
cos 𝜃METHODS

V12 Aixplorer, Supersonic Imagine

A SL15-4 probe (9 MHz central
frequency, 256 elements) was
rotated below the sample by
using a motor, to carry out AE
measurements considering SH
mode waves propagating in
any direction relative to the
principle axis.

Uniaxial stress

Controlled 
water mass

Water tank

Ultrafast imaging of the 
shear wave propagation 

(8000 frames.s-1).

Conical
shear wave

Imaging 
plane

ultrasonic probe

Plane waves

Generation of a supersonic 
shear wave using the 

ultrasonic radiation force  

Conical 
shear wave

Imaging 
plane

Ultrasonic probe

Successive 
push

Experimental setup for angle resolved AE experiments

Supersonic Shear Imaging technique

→Measuring SH shear wave speed in TI media under known uniaxial stress.

10% PVA – 1% Sigmacell type 20
2 isotropic freezing-thawing cycles
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Studied TI medium: TI PVA phantom5

Nonlinear (NL) shear elasticity quantification has become a new complementary
measurement to that of shear modulus characterizing soft tissues linear elasticity. It
relies on acoustoelasticity (AE) theory. First developed for isotropic soft tissues, this
technique consists in deducing the NL shear modulus from the evolution of the shear
wave speed in uniaxially stressed media1. The implementation of AE in transverse
isotropic (TI) soft tissues such as muscles requires refinements to include the specificities
of the TI symmetry. The adaptation of the AE theory in TI quasi-incompressible media
was previously developed2, but only covers the 9 simplest configurations where the

principal direction of the TI medium, stress, polarization 𝒖 and propagation 𝒌 directions
of the shear waves are either parallel or perpendicular to one another. As a result, the
first ex vivo estimations of muscle NL elasticity are highly biased since it is really hard to
experimentally match the 9 configurations previously defined2. Therefore, the goal of

our work is to consider the angle dependency of stress, 𝒖 and 𝒌 directions with respect
to the principal axis.

DISCUSSION

RESULTS

• The angle resolved AE equation for SH mode shear waves in TI medium was developed and verified experimentally on a TI PVA phantom.
• Since our development is based on SH mode shear waves, any experimental application of our equation requires (1) to identify the precise direction of the principal

axis of the medium and (2) to place the probe parallel to a plane containing the principal axis, which is challenging on ex vivo muscle tissues, as well as on in vivo
pennate muscles. Further development considering SV mode shear waves would complete our work.

• The retrieval of the complete set of muscles’ NL parameters requires the use of other complementary AE configurations (rotation of stress, polarization and
propagation directions), as well as an independent estimation of 𝐸∥.

1/ Gennisson J.-L. et al., JASA 2008; 2/ Bied M. et al., IEEE IUS 2020; 3/ Johnson G.C., J. Nondestruct. Eval. 1982; 4/ Destrade M. et al., JASA 2010; 5/ Chatelin S. et al., PMB 2014.

Where 𝑢, 𝑢𝑆, 𝑢𝐷 are the total, static (due to static stress), and dynamic (due to the shear wave) displacement vectors, respectively. Ԧ𝑎 the position in Lagrangian coordinates, 𝑘 the propagation vector, 𝜃 the angle between the principal axis and 𝑘, 
(µ//, µ⊥, E//) the linear elastic coefficients, (A, G, H, J) the third order elastic coefficients, (I2, I3) invariant of the strain tensor and 𝜌0 the density.
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