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INTRODUCTION THEORY

Nonlinear (NL) shear elasticity quantification has become a new complementary
measurement to that of shear modulus characterizing soft tissues linear elasticity. It
relies on acoustoelasticity (AE) theory. First developed for isotropic soft tissues, this
technique consists in deducing the NL shear modulus from the evolution of the shear e =yl + (EII SUy
wave speed in uniaxially stressed medial. The implementation of AE in transverse 2 2

isotropic (TI) soft tissues such as muscles requires refinements to include the specificities
of the Tl symmetry. The adaptation of the AE theory in Tl quasi-incompressible media
was previously developed?, but only covers the 9 simplest configurations where the

— Expressing the speed of SH (Shear Horizontal) mode elastic shear waves in an uniaxially stressed (along x1) Tl quasi-incompressible solid.
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principal direction of the TI medium, stress, polarization U and propagation k directions
of the shear waves are either parallel or perpendicular to one another. As a result, the
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first ex vivo estimations of muscle NL elasticity are highly biased since it is really hard to + Xq k= "0\ equation expression
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experimentally match the 9 configurations previously defined?. Therefore, the goal of 1 Gak) (with 2 = uP + uS)
our work is to consider the angle dependency of stress, u and k directions with respect i _ o 00 vooth £ 6H mode ol =
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— Measuring SH shear wave speed in Tl media under known uniaxial stress.
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[ Studied Tl medium: Tl PVA phantom? ] DISC U SSIO N

* The angle resolved AE equation for SH mode shear waves in TI| medium was developed and verified experimentally on a TI PVA phantom.

* Since our development is based on SH mode shear waves, any experimental application of our equation requires (1) to identify the precise direction of the principal
axis of the medium and (2) to place the probe parallel to a plane containing the principal axis, which is challenging on ex vivo muscle tissues, as well as on in vivo
pennate muscles. Further development considering SV mode shear waves would complete our work.

 The retrieval of the complete set of muscles’ NL parameters requires the use of other complementary AE configurations (rotation of stress, polarization and
propagation directions), as well as an independent estimation of E}.
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