Whole-Body dynamic PET: Effect of temporal gaps on FDG K_i quantification from 3D and 4D reconstruction algorithms

Zacharias Chalampalakis*, Simon Stute*, Marina Filipovic*, Thibaut Merlin†, Claude Comtat*
* Service Hospitalier Frédéric Joliot, CEA, Inserm, CNRS, Univ. Paris Sud, Univ. Paris Saclay, Orsay, France
† LaTIM, INSERM 1011, CHRU de Brest, France

Introduction and study setup

- In whole-body (WB) dynamic PET imaging, acquisition is performed sequentially over bed positions to achieve whole body coverage, introducing large temporal gaps in the accepted data.
- The objective of this work is to study the effect of temporal gaps on quantification of FDG K_i from Patlak analysis and compare reconstruction methods and acquisition protocols.
- The brain Zubal [1] phantom was used to simulate dynamic scans for a single bed and 3 different WB protocols. The reconstruction methods listed below were evaluated over 50 noise replicates.
- 3D: Frame by frame 3D reconstruction, followed by post reconstruction Patlak analysis.
- 4D Spectral: Dynamic reconstruction with Spectral basis functions (4, 7 or 15) and Nested-EM [2], followed by post reconstruction Patlak analysis.
- 4D Patlak: Direct Patlak dynamic reconstruction within the Nested–EM framework, using the Patlak coefficients as time basis functions.

Analysis and Results

- **Patlak analysis performed at the ROI (Cortex) level**: In this analysis all algorithms converge to similar levels of K_i bias. For the SB protocol convergence is slower due to the higher number of frames, but in the case of WB protocols all reconstructions demonstrate similar convergence behaviour.

ROI TAC Metrics

\[TAC_{ROI}(\text{Cortex}) = K_i(\text{ROI}) \]

ROI Bias and Stdv over replicates \mathcal{R}:

\[\text{ROI Bias}_0 = \frac{\sum_{i=1}^{N} \left(R_{i}^{\text{GT}} - R_{i}^{\text{ROI}} \right)^2}{\sum_{i=1}^{N} R_{i}^{\text{GT}}} \]

\[\text{ROI Stdv}_0 = \sqrt{\frac{\sum_{i=1}^{N} \left(R_{i}^{\text{GT}} - R_{i}^{\text{ROI}} \right)^2}{\sum_{i=1}^{N} R_{i}^{\text{GT}}}} \]

- **Patlak analysis performed at the voxel level (parametric imaging)**: Analysis over the Cortex ROI showed for 3D reconstruction and post-recon ordinary least squares fitting that K_i bias increases with iteration and doesn’t converge. In contrary both 4D algorithms demonstrate convergence, with similar bias levels to the TAC ROI analysis above.

Parametric ROI TAC Metrics, for voxels $j \in \text{Cortex}$

\[TAC_{ROI}(j) = K_i(j) \]

Parametric ROI Bias and Stdv over replicates \mathcal{R}:

\[\text{ROI Bias}_{0,j} = \frac{\sum_{i=1}^{N} \left(R_{i}^{\text{GT}} - R_{i}^{\text{ROI}} \right)^2}{\sum_{i=1}^{N} R_{i}^{\text{GT}}} \]

\[\text{ROI Stdv}_{0,j} = \sqrt{\frac{\sum_{i=1}^{N} \left(R_{i}^{\text{GT}} - R_{i}^{\text{ROI}} \right)^2}{\sum_{i=1}^{N} R_{i}^{\text{GT}}}} \]

Voxel-wise ROI Metrics, for Cortex ROI

Mean over replicates $\mathcal{R} := \overline{R}_j$

Ground truth \overline{R}_j

\[\text{Bias}_{ROI} = \frac{\sum_{i=1}^{N} R_{i}^{\text{GT}}(\overline{R}_j - R_{i}^{\text{ROI}})^2}{\sum_{i=1}^{N} R_{i}^{\text{GT}}} \]

\[\text{Stdv}_{ROI} = \sqrt{\frac{\sum_{i=1}^{N} \left(R_{i}^{\text{GT}} - R_{i}^{\text{ROI}} \right)^2}{\sum_{i=1}^{N} R_{i}^{\text{GT}}}} \]

Conclusions and Future directions

- All 4D reconstruction algorithms in WB protocols provided K_i estimates with lower stdv than that of 3D reconstruction in WB and SB protocols.
- For the simulated non-reversible two tissue compartment models, the Spectral model with 4 exponentials showed better performance over the algorithms with higher number of exponentials and direct Patlak 4D reconstruction, for all cases of WB acquisition protocols.
- A comparison of WB protocols shows that WB2 and WB3 have better performance over WB1, in terms of bias and noise levels.
- Further evaluation using non-linear fitting methods and direct reconstruction with non-linear models is required to better differentiate for the differences between whole-body dynamic protocols, as these models are more sensitive to the noise of the dynamic data.

Analysis over the Cortex ROI showed for 3D reconstruction and post-recon ordinary least squares fitting that K_i bias increases with iteration and doesn’t converge. In contrary both 4D algorithms demonstrate convergence, with similar bias levels to the TAC ROI analysis above.

ROI TAC Metrics

\[TAC_{ROI}(\text{Cortex}) = K_i(\text{ROI}) \]

ROI Bias and Stdv over replicates \mathcal{R}:

\[\text{ROI Bias}_0 = \frac{\sum_{i=1}^{N} \left(R_{i}^{\text{GT}} - R_{i}^{\text{ROI}} \right)^2}{\sum_{i=1}^{N} R_{i}^{\text{GT}}} \]

\[\text{ROI Stdv}_0 = \sqrt{\frac{\sum_{i=1}^{N} \left(R_{i}^{\text{GT}} - R_{i}^{\text{ROI}} \right)^2}{\sum_{i=1}^{N} R_{i}^{\text{GT}}}} \]

- **Patlak analysis performed at the voxel level (parametric imaging)**: Analysis over the Cortex ROI showed for 3D reconstruction and post-recon ordinary least squares fitting that K_i bias increases with iteration and doesn’t converge. In contrary both 4D algorithms demonstrate convergence, with similar bias levels to the TAC ROI analysis above.

Parametric ROI TAC Metrics, for voxels $j \in \text{Cortex}$

\[TAC_{ROI}(j) = K_i(j) \]

Parametric ROI Bias and Stdv over replicates \mathcal{R}:

\[\text{ROI Bias}_{0,j} = \frac{\sum_{i=1}^{N} \left(R_{i}^{\text{GT}} - R_{i}^{\text{ROI}} \right)^2}{\sum_{i=1}^{N} R_{i}^{\text{GT}}} \]

\[\text{ROI Stdv}_{0,j} = \sqrt{\frac{\sum_{i=1}^{N} \left(R_{i}^{\text{GT}} - R_{i}^{\text{ROI}} \right)^2}{\sum_{i=1}^{N} R_{i}^{\text{GT}}}} \]

Voxel-wise ROI Metrics, for Cortex ROI

Mean over replicates $\mathcal{R} := \overline{R}_j$

Ground truth \overline{R}_j

\[\text{Bias}_{ROI} = \frac{\sum_{i=1}^{N} R_{i}^{\text{GT}}(\overline{R}_j - R_{i}^{\text{ROI}})^2}{\sum_{i=1}^{N} R_{i}^{\text{GT}}} \]

\[\text{Stdv}_{ROI} = \sqrt{\frac{\sum_{i=1}^{N} \left(R_{i}^{\text{GT}} - R_{i}^{\text{ROI}} \right)^2}{\sum_{i=1}^{N} R_{i}^{\text{GT}}}} \]