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Where U is the displacement vector, d the position in Lagrangian coordinates, k the propagation vector, (u,, u,, E,) the linear elastic coefficients, (A, G, H, J) the third order elastic coefficients, (/,, /5) invariant of the strain tensor and pg the density.
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The AE theory in Tl quasi-incompressible media was derived, leading to the expression of the shear wave speed as a function of stress in 9 specific configurations. Three nonlinear
, Shear wave speed map = Bovine muscular tissues elastic moduli appear in the outcoming equations, along with the 3 linear elastic moduli (y, p,, Ey) of Tl media. AE experiments were carried out on Tl phantoms and beef muscles

. ‘ and the slopes of the experimental povZ (o) curves were used to retrieve the nonlinear elastic moduli A of the studied media.

To fully take advantage of the AE theory and recover H and J, the measurement of £ is necessary but remains challenging because it requires lateral strain estimation. This lateral
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strain estimation can be recovered by static elastography technique but remains very sensitive to lateral resolution. Moreover, it is very challenging to control the polarization and
propagation direction of shear waves with respect to the fiber axis. Then it is strongly difficult to match experimental position with theoretical configurations. The combination of
Backscatter Tensor Imaging (BTI) or Elastic Tensor Imaging (ETI) with AE experiments in Tl tissues would help with the exact positioning of the probe and stress with respect to the
muscle fibers. This work paves the way to the use of the AE theory to improve muscle characterization for biomechanics, clinics and sport applications.
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