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The diaphragm is the main respiratory muscle. Assessing its function is of primary importance in various clinical settings.

Shear wave (SW) elastography can be used to as a surrogate to transdiaphragmatic pressure, both in healthy and subjectsa and critically ill

patientsb. However, diaphragm mechanical properties such as viscosity could provide valuable information about diaphragm function. SW

elastography has been used in a variety of biological tissue to estimate their mechanical properties. Because diaphragm thickness is relatively

small (h ≈ 2mm), shear waves are very likely to be guided. This phenomenon occurs when the shear waves wavelengths happen to be greater

than the tissue thickness. In this work, we used the Supersonic Shear Imaging (SSI) technique to better understand shear wave propagation in

the diaphragm. A dispersion analysis was performed to quantify diaphragm viscoelasticity.
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Simulations performed using the 

SimSonic Matlab Toolbox
The diaphragm was simulated as an

isotropic elastic plate immerged in water.

Elastic coefficients of the Christoffel

tensor for the diaphragm were as follow:

c11 = c33 = 2.3716 GPa

c13 = 2.3715 GPa  

c55 = 19.9808 kPa

Water

Diaphragm

Water

h = 2 mm

Diaphragm mechanical properties

were retrieved by fitting an

appropriate propagation model to

the phase velocity dispersion

curve (Voigt’s model)c and

compared to in vivo acquisition.

A very good agreement was found between

the analytical model and the simulation. The

increase in SW speed with the increase in

frequency corresponds to the lowest flexural

model of the plate parallel to the fibers. The

increase in SW speed with SW frequency

indicates that SW may be guided within the

diaphragm. In vivo Experimental data (blue

doted line) are well predicted by both analytical

model: anisotropic viscoelastic plate and

isotropic viscoelastic plate.

Our results support

previous findings regarding the guidance of SW in

confined tissues. It also highlights the potential of the

SSI technique for the in vivo assessment of

diaphragm viscoelasticity, also during breathing.

Further works are being developed to establish the

proper guided model for the SW propagation. This

includes analytical modelling + simulation with proper

boundary conditions.
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Anisotropic viscoelastic plate

C11=2.6 GPa; C33=4.6 GPa; C55=39.6 kPa (6 m.s-1); =6 Pa.s
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Elastic isotropic plate

C11=2.6 GPa; C55=27 kPa (5.2 m.s-1) 

Isotropic viscoelastic plate

C11=2.6 GPa; C55=27 kPa (5.2 m.s-1); =5 Pa.s
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