Automated two-steps manufacturing of [11C]glyburide for PET imaging in Humans¹

Fabien Caillé^a, Philippe Gervais^a, Sylvain Auvity^b, Christine Coulon^a, Solène Marie^a, Nicolas Tournier^a, Bertrand Kuhnast^a

^aUniversité Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France ^bAssistance Publique-Hôpitaux de Paris, Hôpital Necker – Enfants malades, Inserm, UMR-S 1144, Université de Paris, Optimisation thérapeutique en neuropsychopharmacologie, Paris, France. ¹Caillé F. et al., Nucl. Med. Biol. 2020, 20

🖐 Inserm

NH:

universite PARIS-SACLAY

Daonil' 5 mg

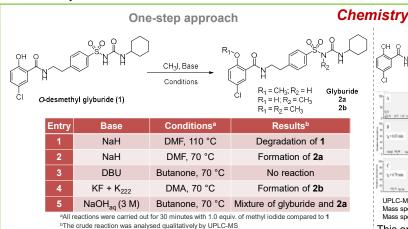
Glyburide

Context

Glyburide is an approved drug to treat diabetes which binds to the sulfonylurea receptors (SUR-1, ABCC8) and is a substrate of OATP and ABC transporters. Positron emission tomography (PET) using radioisotopically labelled [11C]glyburide would be a powerful tool to quantitatively image those proteins and assess pharmacokinetic parameters of functional or pathological tissues. Radiolabelling of glyburide with carbon-11 ($t_{1/2}$ = 20.4 min.) has already been described in one step by methylation using O-desmethylglyburide and [11C]methyl triflate in the presence of sodium hydroxide but lack of reproducibility. Aiming at H₃C investigating the use of [11C]glyburide in a clinical trial, we have developed a reproducible one pot two-steps radiomethylation followed by urea formation and a complete quality control compliant with to the European Pharmacopeia 9.7 guidelines for the manufacturing of [¹¹C]glyburide as a radiopharmaceutical preparation for human injection.

[¹¹C]Glyburide

UV (A) and radioactive (a preparative HPLC purific


[¹¹C]glyburide

No side product was observed during the methylation step. A large excess of cyclohexyl isocyanate and sodium hydroxide were used to reach full

conversion of [11C]glyburide. Purification by HPLC followed by reformulation

and sterilization afforded 1.5 GBq of [11C]glyburide with high reproducibility

(B) chr

Selectively alkylating the phenol moiety from the sulfonylurea was difficult

due to the high capacity of sulfonylurea to deprotonate at pH above 7.

1) [¹¹C]MeOT1, NaOH (1 M) Butanone, 70 °C, 2 min. 2) CyNCO, NaOH (3 M) Butanone, 70 °C, 3 min.

> 5% n.d.c. RCY 10 ± 20 GBg/um al time 40 min

CHJ, NaOH CyNCO, NaOH_a Butanone, 70 °C Butanone 70 Glyburide Column .

Two-steps approach

UPLC-MS analysis of the two-steps one pot non-radioactive synthesis of glyburide from **3** after 1 hour. A) Full chromatogram; B) Mass spectrum of the 6.63 min. peak; C) Mass spectrum of the 6.79 min. peak; D) Mass spectrum of the 7.00 min. peak; E) Mass spectrum of the 7.52 min. peak; F) Mass spectrum of the 7.71 min. peak.

This one pot two-steps approach demonstrated orthogonality as no other methylated products were observed. The side products observed will not be detrimental moving to radiochemistry and will be discarded during purification.

Quality control

Test	Specifications	Results	HA CO
Organoleptic test	Limpid colourless liquid	Compliant	A Reference glytestie
pН	5.0 - 8.0	6.2	
Chemical identification	t _R = 2.7-3.3 min	Compliant	. Warmandarda
Chemical purity	≥ 95%	≥ 99%	
Radiochemical purity	≥ 95%	≥ 99%	e Augusta
Molar activity	≥ 4 GBq/µmol	14 ± 2 GBq/µmol	Analytical radio-HPLC for the quality control [¹¹ C]glyburide for A) glyburide reference; B) [¹¹ C]glybu
Residual solvents	Ethanol ≤ 0.79 g/inj. Acetone ≤ 50.00 mg/inj. Acetonitrile ≤ 4.10 mg/inj. Butanone ≤ 50.00 mg/inj.	Compliant	(UV detection): C) [¹¹ C]glyburide (gamma detection).
Radionuclide	Photons energy : 511 keV	≥ 99%	8299998.59 100.00 1.02++06
purity	Half-life : 19.9 – 20.9 min.	20.3 min.	
Filter integrity	≥ 50 psi	60 psi	and a set of the set o
Sterility	Sterile	Sterile	Residual solvents analysis by gas chromatography or [¹¹ C]glyburide preparation with areas under the measured for ethanol, acetone, acetonitrile and butanol
Bacterial endotoxins	≤ 50 EU/inj.	3.5 EU/inj.	

The quality control of the [11C]glyburide preparation was compliant with the European Pharmacopeia 9.7 guidelines. The pre-release quality control operations were realized within 15 minutes, leaving 900 MBq of [11C]glyburide for injection.

Conclusion

TRACERIab[®] FX C Pro synopsis for the automated production of [¹¹C]glyburide. 1) 3 (1 mg) and NaOH_{aq} (1 M, 3.5 µL) in butanone (200 µL); 2) CyNCO (4 µL) and NaOH_{aq} (3 M, 7 µL) in butanone (200 µL); 3) H₂OICH₃ON/TFA (45/55/0.1 v/w/v, 1 mL); 4) Waters Symmetry[®] C18 7.8 x 300 mm, 7 µm; 5) H₂O (20 mL); 6) Sep-Pa/[®] C18 cartridge; 7) H₂O (10 mL); 8) EtOH (2 mL); 9) 0.9% NaCl_{aq} (18 mL)

to produce PET images in Humans.

Radiochemistry

3

TRACERIob FX C Pr

We have described a reproducible automated two-steps radiosynthesis of [11C]glyburide with a complete quality control to qualify as a radiopharmaceutical for human injection. This manufacturing process is currently used to conduct a clinical trial to elucidate the hepatic transport of drugs.